Республиканская олимпиада по математике, 2022 год, 9 класс
Дана таблица $35 \times 35$, в клетках которой случайным образом расставлены числа от 1 до 49, причем каждое число $i$ использовалось $i$ раз. Из таблицы наудачу удаляются некоторые клетки, после чего она распадается на связные по сторонам клетчатые многоугольники. Из них выбирается один с наибольшей площадью (если таких несколько, то берется случайный). Какое наибольшее количество клеток можно было удалить из таблицы, чтобы некоторое число гарантированно встретилось в выбранном многоугольнике хотя бы 15 раз.
(
Конаныхин А.
)
посмотреть в олимпиаде
Комментарий/решение:
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.