Processing math: 90%

Областная олимпиада по математике, 2021 год, 9 класс


На плоскости нарисован четырёхугольник ABCD. Докажите, что на этой плоскости найдётся такая точка X, что квадрат расстояния от точки X, до самой удалённой от неё вершины четырёхугольника ABCD, не превосходит XA2+XB2+XC2+XD22.
посмотреть в олимпиаде

Комментарий/решение:

  2
4 года 2 месяца назад #

Докажем, что Y, точка пересечения серединных перпендикуляров к диагоналям AC и BD, подходит. Раз уж это серединные перпендикуляры, то AY=CY, BY=DY. Следовательно,

AY2+BY2+CY2+DY22=AY2+BY2>max

  3
4 года 2 месяца назад #

Задача №6. На плоскости нарисован четырехугольник АВСД . Докажите, что на этой плоскости найдется такая точка Х, что квадрат расстояния от точки Х, до самой удаленной от неё вершины треугольника АВСД, не превосходит (〖ХА〗^2+ 〖ХВ〗^2+〖ХС〗^2+〖ХД〗^2)/2

Шешуі: 1) ХА2 ≥ а2, ХВ 2 ≥ 2а2, ХС2 ≥ 3а2 және ХД2 ≥4а2 болсын.

2) (〖ХА〗^2+ 〖ХВ〗^2)/2 ≥ ХА*ХВ ≥ √2а2 , (〖ХС〗^2+ 〖ХД〗^2)/2 ≥ ХС*ХД ≥ 2√3а2

3) (〖ХА〗^2+ 〖ХВ〗^2+〖ХС〗^2+〖ХД〗^2)/2 ≥ ( √2 + 2√3а)2≥ 4а2

  3
4 года 2 месяца назад #

Задача №6. На плоскости нарисован четырехугольник АВСД . Докажите, что на этой плоскости найдется такая точка Х, что квадрат расстояния от точки Х, до самой удаленной от неё вершины треугольника АВСД, не превосходит (〖ХА〗^2+ 〖ХВ〗^2+〖ХС〗^2+〖ХД〗^2)/2

Шешуі: 1) ХА2 ≥ а2, ХВ 2 ≥ 2а2, ХС2 ≥ 3а2 және ХД2 ≥4а2 болсын.

2) (〖ХА〗^2+ 〖ХВ〗^2)/2 ≥ ХА*ХВ ≥ √2а2 , (〖ХС〗^2+ 〖ХД〗^2)/2 ≥ ХС*ХД ≥ 2√3а2

3) (〖ХА〗^2+ 〖ХВ〗^2+〖ХС〗^2+〖ХД〗^2)/2 ≥ ( √2 + 2√(3))а2≥ 4а2

  3
4 года 1 месяца назад #

На плоскости нарисован четырехугольник АВСД . Докажите, что на этой плоскости найдется такая точка Х, что квадрат расстояния от точки Х, до самой удаленной от неё вершины треугольника АВСД, не превосходит (〖ХА〗^2+ 〖ХВ〗^2+〖ХС〗^2+〖ХД〗^2)/2

Шешуі: І тәсіл. 1) ХА2 ≥ а2, ХВ 2 ≥ 2а2, ХС2 ≥ 3а2 және ХД2 ≥4а2 болсын.

2) (〖ХА〗^2+ 〖ХВ〗^2)/2 ≥ ХА*ХВ ≥ √2а2 , (〖ХС〗^2+ 〖ХД〗^2)/2 ≥ ХС*ХД ≥ 2√3а2

3) (〖ХА〗^2+ 〖ХВ〗^2+〖ХС〗^2+〖ХД〗^2)/2 ≥ ( √2 + 2√(3))а2≥ 4а2

Шешуі: ІІ тәсіл. ХА = ХВ = а , ХС = √2а және ХД = 2а болатындай кез – келген АВСД төртбұрышын саламыз. Сонда , (〖ХА〗^2+ 〖ХВ〗^2+ 〖ХС〗^2+ 〖ХД〗^2)/2 = 〖4a〗^2

2) ХА > а , ХВ > √2а , ХС > √3а және 2а < ХД < √6а болатындай кез – келген АВСД төртбұрышын саламыз Бұдан, (〖ХА〗^2+ 〖ХВ〗^2+ 〖ХС〗^2+ 〖ХД〗^2)/2 > 〖4a〗^2