24-я Балканская математическая олимпиада среди юниоров. Греция, 2020 год
Алиса и Боб играют в следующую игру: Алиса выбирает некоторое натуральное число $ n \ ge 2 $, затем формируется множество $ A = \ {1, 2, \ldots, n \} $. Игру начинает Боб, далее ходят по очереди. На каждом своём ходу игрок забирает себе одно число из множества, причем такую, что это число должно отличаться на 1 от ранее выбранного (какого-либо) числа. Игра заканчивается тогда, когда во множестве не останется ни одного числа. Игру выиграет Алиса, если сумма всех ею выбранных чисел является составным числом, в противном случае побеждает Боб. У какого игрока есть выигрышная стратегия в такой игре?
(
Cyprus
)
посмотреть в олимпиаде
Комментарий/решение:
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.