XVII математическая олимпиада «Шелковый путь», 2018 год


Дано натуральное $n$. Назовём словом последовательность из $n$ букв алфавита, а расстоянием $\rho(A, B)$ между словами $A=a_1a_2\dots a_n$ и $B=b_1b_2\dots b_n$ -- количество разрядов, в которых они отличаются (то есть количество таких $i$, для которых $a_i\ne b_i$). Мы скажем, что слово $C$ лежит между словами $A$ и $B$, если $\rho (A,B)=\rho(A,C)+\rho(C,B)$. Какое наибольшее количество слов можно выбрать так, чтобы среди любых трёх нашлось слово, лежащее между двумя другими? ( А. Голованов )
посмотреть в олимпиаде

Комментарий/решение: