Республиканская олимпиада по математике, 2018 год, 9 класс


Можно ли разрезать прямоугольник размером $2018\times 2019$ на фигурки вида уголка из 5 клеток (фигура, полученная вырезанием квадрата $2 \times 2$ из квадрата $3 \times 3$) и квадратика $2 \times 2$ (фигурки можно поворачивать и переворачивать)? ( А. Голованов )
посмотреть в олимпиаде

Комментарий/решение:

Комментарии от администратора Комментарии от администратора №1.     Ответ: нельзя.
Решение. Раскрасим столбцы из 2018 клеток поочерёдно в чёрный и белый цвета (так, чтобы первый и последний столбцы оказались чёрными). При этом, очевидно, в каждом квадрате $2\times 2$ чёрных и белых клеток будет поровну, а в уголке из 5 клеток количества чёрных и белых клеток будут отличаться на 3. Если весь прямоугольник удастся разрезать на фигурки этих двух видов, разность количеств чёрных и белых клеток во всём прямоугольнике будет кратна 3. Но эта разность равна 2018 -- противоречие.

  0
2018-03-20 15:59:56.0 #

"а в уголке из 5 клеток количества чёрных и белых клеток будут отличаться на 3", разве их количество не будет отличаться на 1?

  0
2018-03-20 16:03:00.0 #

я неправильно понял решение. всё верно

  0
2021-04-13 08:59:11.0 #

Я не понял почему в уголке из 5 клеток количество черных и белых будут отличаться на 3?

Могут и отличаться на 1.

  0
2021-04-13 10:08:25.0 #

Доска покрашена так что бы все столбцы были поочередно покрашены в белый и чёрный, как вы представляете уголок с соотношением 2:3?

  0
2022-01-27 16:05:06.0 #

"а в уголке из 5 клеток количества чёрных и белых клеток будут отличаться на 3" это означает что 1 клетка чёрная, а 4 белых