Математикадан аудандық олимпиада, 2017-2018 оқу жылы, 10 сынып
Комментарий/решение:
Если немного порисовать разбиения квадрата на три прямоугольника, чтобы понять, как они вообще могут в нем располагаться, то довольно быстро можно прийти к тому, что есть всего два разных случая (с точностью до поворотов квадрата). Действительно, к верхней стороне квадрата могут примыкать три, два или один прямоугольник. Если их три, то получается конфигурация, показанная на рис. 1 слева. Если два, то — конфигурация, показанная на этом рисунке справа. Если же к верхней стороне примыкает только один прямоугольник, то два других располагаются под ним, а их общая сторона либо горизонтальна (и тогда это то же самое, что первая конфигурация), либо вертикальна (тогда это то же самое, что вторая конфигурация).
Про первую конфигурацию сразу ясно, что все три прямоугольника равны друг другу: по условию они должны быть подобны, но из расположения получается, что равны их большие стороны.
Разберемся со второй конфигурацией. Будем считать ориентацией прямоугольника направление его более длинной стороны (ясно, что у нас тут фигурируют только вытянутые прямоугольники, у которых одна сторона длиннее другой). Как могут быть ориентированы два верхних прямоугольника?
Они не могут быть оба вертикальными (как на рис. 1), потому что тогда они будут равны (большие стороны совпадают), и поэтому отношение большей стороны к меньшей у них меньше 2 (так как меньшая сторона равна половине стороны квадрата, а большая не больше целой стороны квадрата). А у нижнего прямоугольника это отношение будет больше 2. Значит, он не может быть подобным верхним.
Они могут быть оба горизонтальными (рис. 2, слева). Тогда два верхних прямоугольника опять равны и несложно посчитать, что для того, чтобы все три прямоугольника были подобными, нужно, чтобы стороны каждого относились друг к другу как 3:2.
Наконец, может ли быть так, что один из верхних прямоугольников горизонтальный, а второй — вертикальный? Проверим. Эта ситуация изображена на рисунке 2 справа. Введем обозначения, как этом рисунке. Учитывая подобие прямоугольников, находим:
\[ BE = \dfrac1y,\ AD = xy. \]
Поскольку стороны квадрата равны, получаем равенства:
\[ y+\dfrac1y = 1+x = xy.\]
Правое равенство позволяет выразить $y$:
\[y=\dfrac{1+x}{x},\]
после чего из левого равенства получается уравнение
\[\dfrac{1+x}{x}+\dfrac{x}{1+x}=1+x.\]
Его можно переписать в виде
\[x^3-x-1=0.\]
У этого кубического уравнения один действительный корень \(\rho\approx1{,}3247\ldots\), так что такой случай реализуется. Итого, есть три способа разрезать квадрат на подобные прямоугольники.
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.