Западно-Китайская математическая олимпиада, 2016 год
Даны взаимно простые натуральные числа $m$ и $n$ такие, что $2\leq m < n$. Определите наименьшее возможное натуральное число $k$, удовлетворяющее следующим условиям: для любого $m$-элементного подмножества $I$ множества $\{1,2,\cdots,n\}$, если $\sum\limits_{i \in I} i > k$, то существует последовательность, состоящая из $n$ действительных чисел $a_1\leq a_2 \leq \cdots \leq a_n$ такая, что $$\frac1m\sum_{i\in I} a_i > \frac1n\sum_{i=1}^na_i.$$
посмотреть в олимпиаде
Комментарий/решение:
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.