Районная олимпиада, 2003-2004 учебный год, 10 класс
Известно, что график функции $y=f(x)+2g(x)$ — прямая, проходящая через точки $A(-1,3)$ и $B(1,2)$, а график функции $3f(x)-g(x)$ — прямая,симметричная $AB$ относительно оси $OY$. Найдите функции $f$ и $g$.
посмотреть в олимпиаде
Комментарий/решение:
$y=-\cfrac{1}{2}x+\cfrac{5}{2}$ - прямая, проходящая через $A(−1,3)$ и $B(1,2)$, $y=\cfrac{1}{2}x+\cfrac{5}{2}$ - прямая, симметричная $(AB)$ относительно оси $OY$.
$\left\{ \begin{array}{l} f(x)+2g(x) = -\cfrac{1}{2}x+\cfrac{5}{2}, \\ 3f(x) - g(x) = \cfrac{1}{2}x+\cfrac{5}{2}. \end{array} \right.$
Решив систему относительно $f(x)$ и $g(x)$, получим:
$\left\{ \begin{array}{l} f(x) = \cfrac{1}{14}x+\cfrac{15}{14}, \\ g(x) = -\cfrac{2}{7}x+\cfrac{5}{7}. \end{array} \right.$
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.