Математикадан «Туймаада» олимпиадасы. Кіші лига. 2016 жыл
$a$, $b$, $c$, $d$ сандары $0 < a\le b\le d\le c$ және $a+c=b+d$ шарттарын қанағаттандырады. Ұзындығы $a$ болатын кесіндінің ішінде орналасқан $P$ нүктесі үшін, қабырғалары $a$, $b$, $c$, $d$ болатын төртбұрыштың бір қабырғасы $a$ екенін дәлелдеңіз, егер осы төртбұрышқа іштей сызылған шеңбер $P$ нүктесі арқылы өтсе.
(
Л. Емельянов
)
посмотреть в олимпиаде
Комментарий/решение:
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.