Processing math: 47%

Математикадан «Туймаада» олимпиадасы. Кіші лига. 2012 жыл


p=1601 (жай сан) болсын, ал қысқартылмайтын бөлшек mn, алымдары p санына қысқармайтын, 102+1, 112+1, , 1(p1)21 бөлшектердің қосындысына тең болсын. 2m+n саны p санына бөлінетінін дәлелдеңіз. ( А. Голованов )
посмотреть в олимпиаде

Комментарий/решение:

  10
2 года 2 месяца назад #

Пусть a^2\equiv-1\pmod p(таковой существует, так как p\equiv1\pmod4) и S=(\mathbb{Z/pZ})\setminus\{a,p-a\}. Ясно, что |S|=p-3. Тогда s=\sum_{a\in S}\frac{1}{a^2+1}\equiv\sum_{a\in S}\frac{1}{a^{-2}+1}=\sum_{a\in S}\frac{a^2}{a^{2}+1}=p-3-s\Rightarrow s\equiv-\frac32\pmod pЗдесь мы использовали биективность x\rightarrow\frac1x на множестве S, которая следует из \{\frac11,\frac12,...,\frac1{p-1}\}=\{1,2,...,p-1\}a(p-a)\equiv1\pmod pВ итоге \frac mn\equiv1+s\equiv-\frac12\pmod p\\2m+n\equiv0\pmod pчто требовалось доказать