Математикадан «Туймаада» олимпиадасы. Кіші лига. 2008 жыл


1-ден 501-ге дейінгі натурал сандардың ішінен 250 сан таңдалды. ${{a}_{1}}+{{a}_{2}}+{{a}_{3}}+{{a}_{4}}-t$ саны 23-ке бөлінетіндей, кез келген бүтін $t$ үшін, таңдалған сандар ішінен ${{a}_{1}}$, ${{a}_{2}}$, ${{a}_{3}}$ және ${{a}_{4}}$ сандары табылатынын дәлелдеңіз. ( К. Кохась )
посмотреть в олимпиаде

Комментарий/решение: