Олимпиада Туймаада по математике. Младшая лига. 2005 год


Точка $I$ — центр вписанной окружности треугольника $ABC$. Точки $B_1$ и $C_1$ — середины сторон $AC$ и $AB$ соответственно. Известно, что $\angle BIC_1 + \angle CIB_1 = 180^\circ$. Докажите равенство $AB+AC=3BC$. ( Д. Ростовский, Ф. Бахарев )
посмотреть в олимпиаде

Комментарий/решение: