Олимпиада Туймаада по математике. Старшая лига. 2004 год


На плоскости провели 100 прямых, никакие две из которых не параллельны и никакие три не пересекаются в одной точке, и отметили все точки их пересечения. После этого все прямые и $k$ отмеченных точек стерли. При каком наибольшем $k$ по оставшимся точкам пересечения заведомо можно восстановить исходные прямые? ( А. Голованов )
посмотреть в олимпиаде

Комментарий/решение: