Городская Жаутыковская олимпиада, 9 класс, 2015 год
Пусть дан треугольник $ABC$, $BC < AB$. Пусть $E$, $D$ середины отрезков $BA$, $AC$ соответственно. На луче $DE$ выбрана точка $F$ так, что $DF=2DE$. Докажите, что $2FA_1 < AB+BC+CA$, где $A_1$ — произвольная точка отрезка $BC$.
посмотреть в олимпиаде
Комментарий/решение:
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.