Математикадан 55-ші халықаралық олимпиада, 2014 жыл, Кейптаун
$ABC$ сүйірбұрышты үшбұрышының $BC$ қабырғасында $\angle PAB=\angle BCA$ және $\angle CAQ=\angle ABC$ болатындай $P$ және $Q$ нүктелері белгіленген. $P$ нүктесі $AM$ кесіндісінің ортасы және $Q$ нүктесі $AN$ кесіндісінің ортасы болатындай $AP$ және $AQ$ түзулерінде сәйкесінше $M$ және $N$ нүктелері алынған. $BM$ және $CN$ түзулері $ABC$ үшбұрышының сырттай сызылған шеңберінде қиылысатынын дәлелдеңдер.
посмотреть в олимпиаде
Комментарий/решение:
Пусть $X \equiv BM \cap CN$.
$\frac{NQ}{QC} = \frac{AB}{QC} = \frac{BP}{AP} = \frac{BP}{PM}$, причем $\angle CQN = \angle BPM = 180 - \angle A$, Из чего следует что $\triangle{NCQ} \sim \triangle{BMP}$; то есть, $\angle QBX = \angle QNX$, так что $BQXN$ вписанный
Теперь заметим что $\angle BXC = 180 - \angle BXN = 180 - \angle BQN = 180 - \angle AQC = 180 - \angle A$
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.