Математикадан жасөспірімдер арасындағы 13-ші Балкан олимпиадасы 2009 жыл, Сараево


$ x$, $ y$, $ z$ сандары $ 0 < x,y,z < 1$ және $ xyz = (1 - x)(1 - y)(1 - z)$ болатындай нақты сандар болсын. $ (1 - x)y$, $(1 - y)z$, $(1 - z)x$ сандарының кем дегенде біреуі $ \dfrac {1}{4}$-ден кем емес екенін дәлелдеңіздер.
посмотреть в олимпиаде

Комментарий/решение:

  0
2021-05-07 16:44:25.0 #

Буду идти от противного, пусть все эти выражения меньше $0,25$. Умножим все эти неравенства: $0,25^3>xyz(1-x)(1-y)(1-z)=(xyz)^2$, тогда $1/8>xyz$. Но $xyz=1-x-y-z+xy+yz+zx-xyz$ из чего выходит что: $2xyz=1-(1-x)y-(1-y)z-(1-z)x>1-3*0,25=0,25$. Это означает что $1/8>xyz>1/8$. Противоречие.