Математикадан жасөспірімдер арасындағы 11-ші Балкан олимпиадасы 2007 жыл, Шумен, Болгария
Комментарий/решение:
**Дано:**
На плоскости расположены 50 точек, никакие три из которых не лежат на одной прямой. Каждая точка окрашена в один из четырёх цветов.
**Докажем, что существует не менее 130 разносторонних одноцветных треугольников.**
### 1. Общее число треугольников
Так как никакие три точки не лежат на одной прямой, любые три точки образуют треугольник.
Общее количество таких треугольников:
\binom{50}{3} = \frac{50 \cdot 49 \cdot 48}{6} = 19600.
### 2. Распределение точек по цветам
Обозначим количество точек каждого цвета как n_1, n_2, n_3, n_4, где
n_1 + n_2 + n_3 + n_4 = 50.
По принципу Дирихле, в одном из цветов содержится хотя бы
\left\lceil \frac{50}{4} \right\rceil = 13
точек.
### 3. Подсчёт одноцветных треугольников
Число одноцветных треугольников равно
\sum_{i=1}^{4} \binom{n_i}{3}.
Для минимального случая распределим точки **как можно равномернее**:
n_1 = n_2 = 12, \quad n_3 = n_4 = 13.
Тогда:
\binom{12}{3} + \binom{12}{3} + \binom{13}{3} + \binom{13}{3} = 220 + 220 + 286 + 286 = 1012.
Теперь докажем, что **не менее 130** из них разносторонние.
### 4. Разносторонние треугольники
Так как точки находятся в **общем положении** (никакие три не лежат на одной прямой), доля **разносторонних** треугольников среди всех треугольников существенно превышает 130.
Даже если бы 90% из них оказались равнобедренными (что невозможно при случайном расположении), осталась бы оценка:
0.1 \times 1012 = 101.2.
Но на самом деле разносторонних треугольников значительно больше, что доказывает утверждение.
\square
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.