10-я Балканская математическая олимпиада среди юниоровКишинёв, Молдавия, 2006 год
Комментарий/решение:
Из условия $\angle ABD+\angle DBE + \angle CBE = \angle DBE + 2\angle CBE $ . С одной стороны $\angle BAC = 180^{\circ} - 2( \angle DBE + 2\angle CBE)$ так как $AB=AC$ с другой , так как $EB=ED$ то $\angle BAC = 180^{\circ}-\angle ADB - \angle ABD = \angle DBE - \angle CBE $ , откуда $\angle ABE = 60^{\circ}$ . При этом условный треугольник существует $BAC<60^{\circ}$ .
Тогда $\angle COD = 180^{\circ} - \dfrac{\angle DBE + \angle ACB}{2} = 180^{\circ} - \dfrac{\angle DBE + 60^{\circ} + \angle CBE}{2} = 180^{\circ} - \dfrac{\angle ABE + 60^{\circ}}{2} = 120^{\circ}$
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.