Қалалық Жәутіков олимпиадасы
7 сынып, 2011 жыл


$O$ — теңқабырғалы $ABC$ үшбұрыштың центрі. $X$ нүктесінен өтетін кез келген түзу $AB$ кесіндісін немесе $OC$-ны қиятындай $X$ нүктелер жиынын табыңдар.
посмотреть в олимпиаде

Комментарий/решение:

  1
2017-07-17 23:01:52.0 #

Ответ: ГМТ точек $X $ будет пространство между прямыми $AD $ и $BE $, где $AD||OC||BE $

Обоснование : чтобы две прямые не пересеклись, нужно чтобы они были параллельными. Если точка $X $ находится между $AD $ и $BE $, то прямая , проходящая через точку $X $ пересечет или 2 прямые сразу , или отрезок $AB $ ( в случае параллельности с $ OC $), или же $OC $. Если же $X $ находится вне указанного ГМТ, то можно построить прямую, проходящую через $X $, не пересекающую $OC $, и при этом не пересекающую отрезок $AB $

  0
2017-08-03 00:32:53.0 #

Из данного пространства легко можно найти точку, не удовлетворяющую условию задачи.