Математикадан аудандық олимпиада, 2007-2008 оқу жылы, 8 сынып


4 таңбалы санды кері жазғанда, ол бастапқы саннан 4 есе үлкен болып шықты. Осы шартты қанағаттандыратын 4 таңбалы санды тап.
посмотреть в олимпиаде

Комментарий/решение:

  1 | Модератормен тексерілді
2016-11-25 17:37:04.0 #

b_Ответ: $2178$._b

$4\cdot\overline{abcd}=\overline{dcba}$

$\overline{dcba}$ - четырехзначное и четное, значит $a=2$.

$4\cdot\overline{2bcd}=\overline{dcb2}$

C одной стороны $d=\{8,\,9\}$, с другой $4d$ оканчивается $2$, значит $d=8$.

$4\cdot\overline{2bc8}=\overline{8cb2}$

С одной стороны, так как $d=8$, то $b=\{0,\,1,\,2\}$, с другой стороны $4c+3$ оканчивается на $b$, но $4c+3$ - нечетное, значит $b=1$.

$4\cdot\overline{21c8}=\overline{8c12}$

$4\cdot(2108+10c)=8012+100c \Rightarrow c=7$.

$4\cdot2178=8712$