Городская олимпиада по математике среди физ-мат школ
Алматы, 2011 год


Пусть $N={{10}^{10}}-1$. Докажите, что существует перестановка $({{a}_{1}},{{a}_{2}},\ldots ,{{a}_{N}})$ чисел $(1,2,\ldots ,N)$ такая, что $$\{|{{a}_{1}}-{{a}_{2}}|, |{{a}_{2}}-{{a}_{3}}|, |{{a}_{3}}-{{a}_{4}}|,\dots, |{{a}_{N-1}}-{{a}_{N}}|\}=\{1,10,{{10}^{2}}, {{10}^{3}},\dots, {{10}^{9}}\}.$$ (Какие-то из разностей $\left| {{a}_{i}}-{{a}_{i+1}} \right|$ могут принимать одинаковые значения, но при этом все значения множества $\{1,10, {{10}^{2}}, {{10}^{3}},\dots, {{10}^{9}}\}$ должны встречаться среди этих разностей). ( Д. Елиусизов )
посмотреть в олимпиаде

Комментарий/решение: