Математикадан аудандық олимпиада, 2014-2015 оқу жылы, 9 сынып


$p\left( p+n \right)+p={{\left( n+1 \right)}^{3}}$ теңдігін қанағаттандыратын $n$ саны табылатындай, барлық жай $p$ сандарын табыңыз.
посмотреть в олимпиаде

Комментарий/решение:

Комментарии от администратора Комментарии от администратора №1.     Ответ: $p=2$.
Решение. Левая часть уравнения делится на $p$. Поэтому число $n+1$ должен имеет простой делитель $p$. Пусть $n+1=pk$, где $k$ — натуральное. Тогда имеем: $p(p + pk - 1) + p = {p^3}{k^3} \Rightarrow 1 + k = pk^3$, откуда $k(p{k^2} - 1) = 1$. Понятно, что единственное возможное значение для $k$ это 1, откуда $p=2$.