Леонард Эйлер атындағы олимпиада,
2009-2010 оқу жылы, қорытынды кезеңнің 2-ші туры
Дөңес $ABCD$ төртбұрышында $B$ және $D$ бұрыштары тең, $CD=4BC$, ал $A$ бұрышының биссектрисасы $CD$ қабырғасының ортасынан өтеді. $AD/AB$ қатынасы қандай шамаға тең болуы мүмкін?
(
С. Берлов
)
посмотреть в олимпиаде
Комментарий/решение:
Комментарии от администратора Комментарии от администратора №1. Ответ. 2:3. Решение. Обозначим через $M$ середину стороны $CD$. Рассмотрим на луче $AB$ точку $K$, симметричную точке $D$ относительно прямой $AM$. Поскольку $\angle ABC = \angle ADM = \angle AKM$, то $BC \parallel KM$ и точка $K$ лежит на отрезке $AB$. Поскольку $CM = DM = KM$, то $\angle DKC = 90 ^\circ$ и $KC \parallel AM$. Следовательно, у треугольников $AKM$ и $KBC$ стороны соответственно параллельны, поэтому они подобны с коэффициентом $k = KM/BC = 2$, откуда $AD = AK = 2KB$ и $AD:AB = 2:3$.
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.