Loading [MathJax]/jax/output/SVG/jax.js

Олимпиада имени Леонарда Эйлера
2012-2013 учебный год, I тур регионального этапа


На пути в музей группа детсадовцев построилась парами, причём количество пар из двух мальчиков было в три раза больше количества пар из двух девочек. На обратном пути та же группа построилась так, что количество пар из двух мальчиков было в четыре раза больше количества пар из двух девочек. Докажите, что эту же группу можно построить так, чтобы количество пар из двух мальчиков было в семь раз больше количества пар из двух девочек. ( И. Богданов )
посмотреть в олимпиаде

Комментарий/решение:

Комментарии от администратора Комментарии от администратора №1.     Решение. Пусть количество пар девочек на пути в музей было a, а на обратном пути — b. Значит, количества пар мальчиков на пути туда и обратно были равны 3a и 4b соответственно. Поскольку каждая из остальных пар состояла из мальчика и девочки, разность между количествами пар мальчиков и девочек составляет 3aa=4bb, откуда 2a=3b, и b делится на 2, то есть b=2c при некотором целом c.
Рассмотрим теперь ситуацию на пути обратно, выберем в ней c пар мальчиков и c пар девочек и перестроим их в разнополые пары. Останется c пар девочек и 7c пар мальчиков, что и требовалось.