Математикадан республикалық олимпиада, 2006-2007 оқу жылы, 11 сынып


$AB\ne CD$ болатын $ABCD$ дөңес төртбұрышы шеңберге іштей сызылған. $AKDL$ және $CMBN$ —қабырғалары $a$-ға тең болатын ромбтар. $K$, $L$, $M$ және $N$ нүктелерінің бір шеңбердің бойында жататынын дәлелдеңіздер.
посмотреть в олимпиаде

Комментарий/решение:

пред. Правка 2   1
2023-04-26 17:22:25.0 #

$K,L,O$ лежат на серединном перпендикуляре к $AD$; $M,N,O$ лежат на серединном перпендикуляре к $CB$. Пусть $\omega_1, \omega_2, \omega_3, \omega_4$ - окружности с центрами $A, B, C, D$ и радиусами $a$. $R$ -радиус $(ABCD)$, тогда $R^2-a^2 = pow(O,\omega_1) = pow(O,\omega_2) = pow(O,\omega_3) = pow(O,\omega_4)$, значит $O$ имеет равную степень относительно этих окружностей и $OK*OL=OM*ON$, поэтому $K,L,M,N$ лежат на одной окружности.