Республиканская олимпиада по математике, 2003 год, 10 класс


Клетчатая доска размера $n\times n$, где $n$ является нечетным натуральным числом, покрашена в шахматном порядке так, что угловые клетки оказались черными. При каких значениях $n$ все черные клетки данной доски можно покрыть трехклеточными уголками без наложения? Для каждого значения $n$, при которых выполняется данное условие, чему равно минимальное число уголков?
посмотреть в олимпиаде

Комментарий/решение: