Городская Жаутыковская олимпиада по математике, 8 класс, 2025 год


Қуанышта сырты бірдей 10 тиын бар. Зергер олардың ішінде $5$-еуі шынайы және $5$-еуі жалған екенін айтты, бірақ қайсысы қандай екенін көрсетпеді. Бір тексеру кезінде Қуаныш кез келген $3$ тиынды таңдай алады, ал зергер олардың ішінен өз қалауы бойынша кез келген екі тиынды көрсетіп, сол екеуінің ішінде нешеуі жалған екенін алдамай айтып береді. Қуаныш зергердің әрекеттеріне қарамастан, $2025$ тексеру арқылы барлық $5$ жалған тиынды нақты анықтай алады деген тұжырым рас па?
посмотреть в олимпиаде

Комментарий/решение:

  0
2025-05-16 19:40:43.0 #

Ответ. Нет.

Решение. Пусть ювелир выберет одну фальшивую и одну настоящую монеты и назовёт их загадочными. Покажем, как он может добиться того, чтобы Куаныш не узнал, какая из загадочных монет какой является.

Если Куаныш спросит про 3 монеты, среди которых 2 загадочных, ювелир выберет две загадочные монеты и сообщит, что среди них 1 фальшивая.

Если Куаныш спросит про 3 монеты, среди которых 1 загадочная, ювелир выберет две незагадочные монеты и сообщит, сколько из них фальшивых.

Если Куаныш спросит про 3 монеты, среди которых 0 загадочных, ювелир выберет две произвольные монеты и сообщит, сколько из них фальшивых.

Заметим, что если две загадочные монеты поменять местами, то ответы ювелира не изменятся. Следовательно, с точки зрения Куаныша ситуация, в которой первая загадочная монета является настоящей, и ситуация, в которой она является фальшивой, останутся возможны, и он не сможет исключить никакую из этих ситуаций. Значит, все 5 фальшивых монет Куаныш гарантированно узнать не сможет.