8-я международная Иранская олимпиада по геометрии, 2021 год, первая лига, 7-8 классы


Точки $A_1$, $A_2$, $…$, $A_{2021}$ расположены на плоскости так, что никакие три из них не лежат на одной прямой и $$\angle A_1A_2A_3+\angle A_2A_3A_4+\dots +\angle A_{2021}A_1A_2=360^\circ,$$ где под $\angle A_{i-1} A_i A_{i+1}$ подразумевается угол, меньший $180^{\circ}$ (здесь $A_{2022}=A_1$ и $A_0=A_{2021}$). Докажите, что сумма некоторых из этих углов равна $90^\circ$.
посмотреть в олимпиаде

Комментарий/решение:

  10
2023-11-22 20:53:31.0 #

Пусть $A_1, A_2, . . . , A_{2021}$ — $2021$ точки на плоскости, никакие три точки на плоскости не лежат на одной прямой и $$\angle A_1A_2A_3 + \angle A_2A_3A_4 +... + \angle A_{2021}A_1A_2 = 360^o,$$в котором по угол $\angle A_{i-1}A_iA_{i+1}$ мы имеем в виду тот, который меньше $180^o$ (предположим, что $A_{2022} =A_1$ и $A_0 = A_{2021}$) . Докажите, что сумма некоторых из этих углов составит $90^o$