Loading [MathJax]/jax/output/SVG/jax.js

Юниорская олимпиада по математике. Областной этап. 2019-2020 учебный год. 7 класс.


На доске записано натуральное число. Ербулат заметил, что может двумя способами приписать к нему цифру справа так, чтобы полученное число делилось на 9. Сколькими способами он может приписать к данному числу цифру справа так, чтобы полученное число делилось на 3?
   A) 4 B) 5 C) 3 D) 2
посмотреть в олимпиаде

Комментарий/решение:

  1
1 года 10 месяца назад #

Пусть сумма цифр числа некое S, тогда S+a делиться на 9 и S+b делиться на 9, где a,b<10 S+a-(S+b) делиться на 9 a-b делиться на 9 a-b=0,9,-9

если a-b=0 a=b противоречие

если a-b=-9 a=0; b=9 S делиться на 9 S делиться на 3 есть 4 способа если на конце 0,3,6,9 (А)

если a-b=9 a=9; b=0 S делиться на 9 S делиться на 3 есть 4 способа если на конце 0,3,6,9 (А)