Областная олимпиада по математике, 2003 год, 11 класс
Комментарий/решение:
Идея решения почерпнута (или украдена, кому как нравится) отсюда:https://dxdy.ru/post163138.html
1)Рассмотрим отрезок длиной $a$. Возьмем некоторую прямую $L$, составляющую с $a$ угол $\varphi$
2)Длина проекции $a$ на $L$ равна $a\cdot|\cos\varphi|$
3)Будем варьировать $\varphi$ от $-\dfrac{\pi}{2}$ до $\dfrac{\pi}{2}$. Среднее значение проекции отрезка $a$ на $L$ равна
$$a_{average}=\dfrac{1}{\pi}\int\limits_{-\dfrac{\pi}{2}}^{\dfrac{\pi}{2} }{a\cos\varphi d\varphi}=\dfrac{2a}{\pi}$$
4)Средняя сумма проекций 2003 векторов
$$\Sigma_{average}=\dfrac{2}{\pi}\cdot(a_1+...+a_{2003})=\dfrac{2}{\pi}\cdot 1=\dfrac{2}{\pi}$$
5)Теорема о средних: функция не может всюду превышать свое среднее значение
А значит, можно найти $L$, сумма длин проекций на которую не превысит $\dfrac{2}{\pi}$
6)$\dfrac{2}{\pi}<\dfrac{2}{3}$, задача доказана
PS. До поисков в интернете я смог получить среднюю длину векторов ${2}/{\pi}$, правда из других соображений. Не хватило последнего шага - теоремы о средних
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.