Геометриядан 6-шы Иран олимпиадасы, 2019 жыл, 1-ші лига, 7-8 сыныптар


$ABCD$ төртбұрышында келесі шарттар орындалады: $\angle DAC = \angle CAB = 60^\circ,$ $AB = BD - AC.$ $AB$ және $CD$ түзулері $E$ нүктесінде қиылысады. $\angle ADB = 2\angle BEC$ теңдігін дәлелдеңіз.
посмотреть в олимпиаде

Комментарий/решение:

  0
2022-07-05 10:11:23.0 #

Возьмём на $AB$ за точку $A$ такую точку $F$ чтобы $AF=AC$ и $AB+AC=BD$. Пусть $\angle ABD=2\alpha$, $\angle ADB=60-2\alpha$. Тогда остаётся показать что $\angle BED=30-\alpha$. Легко заметить что $\angle FAD=\angle DAC=60$ и треугольники $FAD$ и $CAD$ равны. По счету углов находим что $\angle BDE=3\alpha-30$ $\angle BDE+\angle BEC=2\alpha$ и $\angle BEC=30-\alpha$