Западно-Китайская математическая олимпиада, 2015 год
Пусть $a \in (0,1)$, $f(z)=z^2-z+a$, $z \in \mathbb{C}$ ($\mathbb{C}$ — множество комплексных чисел). Докажите, что для любого комплексного числа $z$, где $|z| \geq 1$, существует комплексное число $z_0$ с условиями $|z_0|=1$ и $|f(z_0)| \leq |f(z)|$.
посмотреть в олимпиаде
Комментарий/решение:
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.