Леонард Эйлер атындағы IX олимпиаданың дистанционды кезеңінің 1-ші туры
20162016 санынан кемінде қанша цифраны өшіргенде, қалған сан 2016-ға бөлінеді? Міндетті түде кемінде бір цифрды өшіру керек, яғни ештеңе өшірмеуге болмайды. Есепке тек мысал ғана келтіріп қана қоймай, алған жауаптағы саннан аз сан өшіргенде неге есеп шарты орындалмайтынын түсіндіру керек.
посмотреть в олимпиаде
Комментарий/решение:
Комментарии от администратора Комментарии от администратора №1. Ответ: Три.
Решение. Так как 2016 делится на 9, сумма цифр получившегося после вычеркивания цифр числа также должна делиться на 9. У числа 20162016 сумма цифр равна 18. Вычёркивание одного или двух нулей нужного результата не даёт: числа 2162016, 2016216 и 216216 на 2016 не делятся. Значит, надо вычеркивать цифры, дающие в сумме 9. Так как сумма любых двух цифр числа 20162016 меньше 9, придётся вычеркнуть хотя бы три цифры. Три цифры вычеркнуть можно: 20162016=20160.
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.