Олимпиада Туймаада по математике. Младшая лига. 2002 год


Дано натуральное число $c$. Последовательность $\{p_k\}$ строится по следующему правилу: $p_1$ — произвольное простое число, а при $k\geq 1$ число $p_{k+1}$ — любой простой делитель числа $p_k+c$, не встречающийся среди чисел $p_1$, $p_2$, $\dots$, $p_k$. Докажите, что последовательность $\{p_k\}$ не может быть бесконечной. ( А. Голованов )
посмотреть в олимпиаде

Комментарий/решение: