Городская олимпиада «Аль-Фараби» по математике, 9 сынып


Известно, что a4b3+b4c3+c4a3=a3b4+b3c4+c3a4. Найдите значение выражения (ab)(bc)(ca).
посмотреть в олимпиаде

Комментарий/решение:

Комментарии от администратора Комментарии от администратора №1.     Ответ: 0.
Преобразовав данное условие в задаче, получим

0=a4b3+b4c3+c4a3a3b4b3c4c3a4=
=(ab)(bc)(ca)(a2b2+b2c2+c2a2+abc(a+b+c))=
=12(ab)(bc)(ca)(a2(b+c)2+b2(c+a)2+c2(a+b)2).
Заметим, что выражение S=a2(b+c)2+b2(c+a)2+c2(a+b)2 равно нулю, только при a=b=c=0. В этом случае искомый ответ, очевидно равен 0. В остальных случаях S0. Поэтому (ab)(bc)(ca)=0, так как
12(ab)(bc)(ca)S=0.