16-я Балканская математическая олимпиада среди юниоров Верия, Греция, 2012 год
Комментарий/решение:
$$\frac{a}{b}+\frac{a}{c}+\frac{c}{b}+\frac{c}{a}+\frac{b}{c}+\frac{b}{a}+6\geq 2\sqrt{2}\left( \sqrt{\frac{1-a}{a}}+ \sqrt{\frac{1-b}{b}}+\sqrt{\frac{1-c}{c}}\right)$$
$$a+b+c=1\Rightarrow \frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}+6\geq 2\sqrt{2}\left( \sqrt{\frac{b+c}{a}}+ \sqrt{\frac{a+c}{b}}+\sqrt{\frac{a+b}{c}}\right)\Rightarrow$$
$$\Rightarrow \left( \frac{b+c}{a}-2\sqrt{2}\cdot \sqrt{\frac{b+c}{a}}+2 \right)+\left( \frac{a+c}{b}-2\sqrt{2}\cdot \sqrt{\frac{a+c}{b}}+2 \right)+\left( \frac{a+b}{c}-2\sqrt{2}\cdot \sqrt{\frac{a+b}{c}}+2 \right)\geq 0\Rightarrow$$
$$\Rightarrow \left(\sqrt{\frac{b+c}{a}}-\sqrt{2} \right)^2+\left(\sqrt{\frac{a+c}{b}}-\sqrt{2} \right)^2+\left(\sqrt{\frac{a+b}{c}}-\sqrt{2} \right)^2\geq 0$$
$$\left(\sqrt{\frac{b+c}{a}}-\sqrt{2} \right)^2+\left(\sqrt{\frac{a+c}{b}}-\sqrt{2} \right)^2+\left(\sqrt{\frac{a+b}{c}}-\sqrt{2} \right)^2=0 \Rightarrow$$ $$\Rightarrow \sqrt{\frac{b+c}{a}}=\sqrt{\frac{a+c}{b}}= \sqrt{\frac{a+b}{c}}=\sqrt{2}\Rightarrow \left\{ \begin{gathered} b + c = 2a\\ a+ c = 2b \\ a+ b= 2c\\ \end{gathered} \right.$$
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.