Азиатско-Тихоокеанская математическая олимпиада, 1991 год


$n$ школьников сидят вокруг учителя, который раздает леденцы. Учитель выбрал первого попавшегося ребенка и дал ему леденец, следующий леденец он дал ребенку сидящему через одного от первого по часовой стрелке, затем он пропустил еще двух школьников, и дал леденец следующему ребенку, затем он пропустил трех и так далее. Найдите все значения $n$ при которых рано или поздно каждый ребенок получит хотя бы по одному леденцу.
посмотреть в олимпиаде

Комментарий/решение: