Loading [MathJax]/jax/output/SVG/jax.js

Олимпиада имени Леонарда Эйлера
2011-2012 учебный год, I тур регионального этапа


Собственным делителем числа называется любой его натуральный делитель, кроме 1 и самого числа. С составным натуральным числом a разрешается проделывать следующие операции: разделить на наименьший собственный делитель или прибавить любое натуральное число, делящееся на его наибольший собственный делитель. Если число получилось простым, то с ним ничего нельзя делать. Верно ли, что с помощью таких операций из любого составного числа можно получить число 2011? ( С. Берлов )
посмотреть в олимпиаде

Комментарий/решение:

Комментарии от администратора Комментарии от администратора №1.     Ответ. Неверно.
Решение. Покажем, что наибольший простой делитель числа при указанных операциях не уменьшается, и потому мы никогда не получим число 2011 из составного числа, имеющего простой делитель, больший, чем 2011.
Заметим, что наибольший собственный делитель b составного числа a делится на наибольший простой делитель p этого числа. В самом деле, очевидно, b=a/q, где q — наименьший простой (и наименьший собственный) делитель числа a, и, поскольку b>1, множитель p должен остаться в разложении частного a/q на простые сомножители (если p=q, это всё равно верно, поскольку тогда a=pn, где n>1). Поэтому если мы делим составное число на его наименьший собственный делитель q, то получаем частное b с тем же наибольшим простым делителем p. Если же мы к числу a=bq прибавляем кратное bc наибольшего собственного делителя b, то получаем число b(q+c), у которого наибольший простой делитель не меньше, чем наибольший простой делитель числа b, то есть не меньше p.