Олимпиада имени Леонарда Эйлера
2011-2012 учебный год, III тур дистанционного этапа


Числитель каждой из 48 дробей равен одному из чисел 2, 3, , 49, знаменатель — тоже, причём каждое из этих 48 чисел встречается как среди числителей, так и среди знаменателей. Докажите, что либо одна из этих дробей равна целому числу, либо из них можно выбрать не более 25 дробей, произведение которых — целое число.
посмотреть в олимпиаде

Комментарий/решение:

Комментарии от администратора Комментарии от администратора №1.    
Решение. Рассмотрим дробь a1/2 со знаменателем 2. Если a1 четно, то мы уже получили целое число. В противном случае умножим a1/2 на дробь a2/a1, результат — на дробь a3/a2 и так до тех пор, пока очередной числитель an не станет чётным (такое когда-то случится, потому что числители не могут повторяться). После этого в произведении получится целое число an/2. Поскольку различных нечётных знаменателей у нас 24, мы перемножили не больше 25 дробей.