Олимпиада имени Леонарда Эйлера2013-2014 учебный год, I тур регионального этапа
Комментарий/решение:
Комментарии от администратора Комментарии от администратора №1. Ответ. Сможет. Решение. Очевидно, достаточно показать, что можно за два взвешивания определить количество фальшивых монет среди шести данных. Назовем эти шесть монет неизвестными. Берем три настоящие монеты и три фальшивые, взвешиваем их с неизвестными. Если весы в равновесии, то среди неизвестных монет ровно три фальшивых. Пусть вес эталонных монет больше. Тогда среди неизвестных монет 4, 5 или 6 фальшивых. Возьмём пять эталонных фальшивых и одну эталонную настоящую и взвесим их с неизвестными монетами. При равенстве мы получаем, что среди неизвестных монет ровно 5 фальшивых, если перевесят эталонные — 6 фальшивых, если перевесят неизвестные — 4 фальшивых. Случай, когда при первом взвешивании перевесили неизвестные монеты, рассматривается аналогично, но второе взвешивание производится с 5 эталонными настоящими монетами и одной эталонной фальшивой.
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.