Олимпиада имени Леонарда Эйлера2011-2012 учебный год, III тур дистанционного этапа
Внутри острого угла $BAC$ взяли такую точку $D$, что угол $CAD$ вдвое больше угла $BAD$. Могла ли точка $D$ оказаться вдвое дальше от прямой $AC$, чем от прямой $AB$?
посмотреть в олимпиаде
Комментарий/решение:
Комментарии от администратора Комментарии от администратора №1. Ответ. Не могло. Решение. Опустим из точки $D$ перпендикуляр $DE$ на прямую $AB$, а на луче $AC$ отложим отрезок $AF = AD$. В равнобедренном треугольнике $ADF$ проведём медиану $AG$. Поскольку она является также биссектрисой и высотой, углы $DAE$ и $DAG$ равны, и прямоугольные треугольники $AED$ и $AGD$ равны по гипотенузе и острому углу. Поэтому $DG = GF = ED$, откуда $DF = 2DE$. Но отрезок $DF$ не перпендикулярен $AC$, и потому длиннее перпендикуляра $DH$, опущенного из точки $D$ на прямую $AC$. Поэтому $DH < 2DE$ откуда $DH \ne 2DE$.
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.