XI математическая олимпиада «Шелковый путь», 2012 год


Задача №1.  Трапеция $ABCD$, где $BC||AD$, вписана в окружность, $E$ — середина дуги $AD$ этой окружности, не содержащей точку $C$. Пусть $F$ — основание перпендикуляра, опущенного из $E$ на прямую, касающуюся окружности в точке $C$. Докажите, что $BC=2CF$. ( А. Васильев )
комментарий/решение(1)
Задача №2.  В каждую клетку таблицы $4 \times4$, в которой строки помечены числами $1,2,3,4$, а столбцы — буквами $a,b,c,d$, записано одно число: $0$ или $1$. Такая таблица называется допустимой, если в каждой ее строке и в каждом столбце стоят ровно по две единицы. Определите количество допустимых таблиц. ( Д. Елиусизов )
комментарий/решение
Задача №3.  Пусть $n > 1$ — целое число. Определите наибольший общий делитель множества чисел $\left\{ \left( \begin{matrix} 2n \\ 2i+1 \\ \end{matrix} \right):0 \le i \le n-1 \right\}$, т.е. наибольшее целое положительное число, делящее $\left( \begin{matrix} 2n \\ 2i+1 \\ \end{matrix} \right)$ без остатка для каждого $i = 0, 1, ..., n–1$. (Здесь $\left( \begin{matrix} m \\ l \\ \end{matrix} \right)=\text{C}_{m}^{l}=\frac{m\text{!}}{l\text{!}\left( m-l \right)\text{!}}$ – биномиальный коэффициент.) ( А. Джумадильдаев )
комментарий/решение
Задача №4.  Докажите, что для любого целого положительного $n$ среднее арифметическое чисел $\sqrt[1]{1},\sqrt[2]{2},\sqrt[3]{3},\ldots ,\sqrt[n]{n}$лежит на отрезке $\left[ 1,1+\frac{2\sqrt{2}}{\sqrt{n}} \right]$. ( А. Васильев )
комментарий/решение
результаты