VII математическая олимпиада «Шелковый путь», 2008 год


Задача №1.  Пусть натуральные числа $a,b,c,d$ таковы, что $d$ делит $a^{2b}+c$ и $d \ge a+c$. Докажите, что $d \ge a + \sqrt[2b]{a}$. ( А. Васильев )
комментарий/решение
Задача №2.  В треугольнике $ABC$ точки $A_0, B_0$ и $C_0$ — середины сторон $BC, CA$ и $AB$ соответственно, а точки $A_1, B_1$ и $C_1$ — середины (по длине) ломаных $BAC, CBA$ и $BCA$ соответственно. Докажите, что прямые $A_0A_1, B_0B_1$ и $C_0C_1$ пересекаются в одной точке. ( Д. Елиусизов )
комментарий/решение
Задача №3.  Дан (неориентированный) граф (без петель) с $2n$ вершинами и с $2n(n-1)$ ребрами, $n > 1$. Докажите, что некоторые вершины и ребра этого графа можно покрасить в красный цвет так, чтобы каждое красное ребро соединяло красные вершины и из каждой красной вершины исходило ровно $n$ красных ребер. ( Д. Елиусизов )
комментарий/решение
Задача №4.  Определите все многочлены $P(x)$ с действительными коэффициентами такие, что для любого рационального $r$ уравнение $P(x) = r$ имеет рациональное решение. ( Д. Елиусизов )
комментарий/решение
результаты