Г. Челноков


Задача №1.  Десятичная запись натурального числа $N$ составлена только из единиц и двоек. Известно, что вычёркиванием цифр из этого числа можно получить любое из 10000 чисел, состоящих из 9999 единиц и одной двойки. Найдите наименьшее возможное количество цифр в записи числа $N$. ( Г. Челноков )
комментарий/решение(1) олимпиада
Задача №2.  Найдите наибольшее вещественное $k$, для которого существуют множество $X$ и его подмножества $Y_1$, $Y_2$, $\dots$, $Y_{31}$, удовлетворяющие следующим двум условиям:
(1) для любых двух элементов $X$ найдется подмножество $Y_i$, не содержащее ни одного из них;
(2) при любом сопоставлении подмножествам $Y_i$ неотрицательных чисел $\alpha_i$ с суммой, равной 1, найдется такой элемент из $X$, что сумма $\alpha_i$, сопоставленных всем содержащим его подмножествам $Y_i$, не меньше $k$. ( И. Богданов, Г. Челноков )
комментарий/решение олимпиада